Filosofía Fungi

Autores/as

DOI:

https://doi.org/10.22370/lv.2024.30.2.4566

Palabras clave:

adaptación, agencia, construcción de nicho, individualidad, unidades de selección

Resumen

Muchos conceptos en ecología y evolución se han construido en base a observaciones zoológicas y, en menor medida, botánicas, mientras que una visión fúngica en estas áreas es prácticamente inexistente. Mucho menos se han indagado aspectos de la filosofía de la biología en base a los hongos. Sin embargo, en este artículo mostramos que dadas sus características particulares, el reino Fungi constituye un sistema de estudio ideal para examinar teórica y empíricamente diferentes aspectos de la filosofía de la biología. Los hongos presentan características de las plantas (como su carácter sésil) y de los animales (como su carácter heterotrófo), pero tienen una plétora de atributos particulares que requieren su propia filosofía, una filosofía Fungi. En esta revisión se aborda cómo entender la individualidad y las unidades de selección natural en los hongos, los diferentes conceptos de adaptación (y sesgos adaptacionistas) en su estudio, y cómo entender los hongos como agentes que construyen su nicho. Estas temáticas se abordan de forma introductoria, presentando las definiciones de estos diferentes conceptos, y cómo los mismos pueden aplicarse en la micología. Se hace una invitación a profundizar en cada tema y, sobre todo, a incentivar un diálogo entre micólogos y filósofos de la biología.

Citas

Aaby, B. H., & Ramsey, G. (2022). Three kinds of niche construction. The British Journal for the Philosophy of Science, 73(2), 351-372. https://doi.org/10.1093/bjps/axz054

Adamatzky, A (2022). Language of fungi derived from their electrical spiking activity. Royal Society Open Science, 9(4), 211926. https://doi.org/10.1098/rsos.211926

Aguilar-Trigueros, C. A., Boddy, L., Rillig, M. C., & Fricker, M. D. (2022). Network traits predict ecological strategies in fungi. ISME Communications, 2(1), 2. https://doi.org/10.1038/s43705-021-00085-1

Aguilar-Trigueros, C. A., Hempel, S., Powell, J. R., Anderson, I. C., Antonovics, J., Bergmann, J., ... & Rillig, M. C. (2015). Branching out: towards a trait-based understanding of fungal ecology. Fungal Biology Reviews, 29(1), 34-41. https://doi.org/10.1016/j.fbr.2015.03.001

Aguilar-Trigueros, C. A., Powell, J. R., Anderson, I. C., Antonovics, J., & Rillig, M. C. (2014). Ecological understanding of root-infecting fungi using trait-based approaches. Trends in Plant Science, 19(7), 432-438. https://doi.org/10.1016/j.tplants.2014.02.006

Aleklett, K., Ohlsson, P., Bengtsson, M., & Hammer, E. C. (2021). Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. The ISME Journal, 15(6), 1782-1793. https://doi.org/10.1038/s41396-020-00886-7

Andrews, K., & Monsó, S. (2021). Animal cognition. En E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2021 edition). https://plato.stanford.edu/entries/cognition-animal/

Anthony, M. A., Bender, S. F., & van der Heijden, M. G. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences, 120(33), e2304663120. https://doi.org/10.1073/pnas.2304663120

Antonelli, A., Fry, C., Smith, R. J., Eden, J., Govaerts, R. H. A., Kersey, P., … & Zuntini, A. R. (2023). State of the World’s Plants and Fungi 2023. Royal Botanic Gardens, Kew. https://doi.org/10.34885/wnwn-6s63

Baedke, J., Fábregas-Tejeda, A., & Prieto, G. I. (2021). Unknotting reciprocal causation between organism and environment. Biology & Philosophy, 36(5), 48. https://doi.org/10.1007/s10539-021-09815-0

Baldrian, P., Větrovský, T., Lepinay, C., & Kohout, P. (2022). High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity, 114(1), 539-547. https://doi.org/10.1007/s13225-021-00472-y

Baud, A., McPeek, S., Chen, N., & Hughes, K. A. (2022). Indirect genetic effects: A cross-disciplinary perspective on empirical studies. Journal of Heredity, 113(1), 1-15. https://doi.org/10.1093/jhered/esab059

Bever, J. D., Westover, K. M., & Antonovics, J. (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85(5), 561-573. https://doi.org/10.2307/2960528

Bianciotto, V., Genre, A., Jargeat, P., Lumini, E., Bécard, G., & Bonfante, P. (2004). Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Applied and Environmental Microbiology, 70(6), 3600-3608. https://doi.org/10.1128/AEM.70.6.3600-3608.2004

Bijma, P. (2014). The quantitative genetics of indirect genetic effects: A selective review of modelling issues. Heredity, 112(1), 61-69. https://doi.org/10.1038/hdy.2013.15

Blum, M. J. (2002). Rapid movement of a Heliconius hybrid zone: evidence for phase III of Wright's shifting balance theory?. Evolution, 56(10), 1992-1998. https://doi.org/10.1111/j.0014-3820.2002.tb00125.x

Boddy, L., Hynes, J., Bebber, D. P., & Fricker, M. D. (2009). Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience, 50(1), 9-19. https://doi.org/10.1007/S10267-008-0450-4

Booth, A. (2014a). Symbiosis, selection, and individuality. Biology & Philosophy, 29, 657-673. https://doi.org/10.1007/s10539-014-9449-8

Booth, A. (2014b). Populations and individuals in heterokaryotic fungi: a multilevel perspective. Philosophy of Science, 81(4), 612-632. https://doi.org/10.1086/677953

Bunn, R. A., Corrêa, A., Joshi, J., Kaiser, C., Lekberg, Y., Prescott, C. E., ... & Karst, J. (2024). What determines transfer of carbon from plants to mycorrhizal fungi? New Phytologist, 244, 1199-1215. https://doi.org/10.1111/nph.20145

Burch, J., Chin, M., Fontenot, B. E., Mandal, S., McKnight, T. D., Demuth, J. P., & Blackmon, H. (2024). Wright was right: leveraging old data and new methods to illustrate the critical role of epistasis in genetics and evolution. Evolution, 78(4), 624-634. https://doi.org/10.1093/evolut/qpae003

Buttery, N. J., Thompson, C. R. L., & Wolf, J. B. (2010). Complex genotype interactions influence social fitness during the developmental phase of the social amoeba Dictyostelium discoideum. Journal of Evolutionary Biology, 23(8), 1664-1671. https://doi.org/10.1111/j.1420-9101.2010.02032.x

Carruthers, P. (2006). The architecture of the mind. Oxford University Press.

Chakraborty, A., Mori, B., Rehermann, G., Hernández Garcia, A., Lemmen‐Lechelt, J., Hagman, A., ... & Becher, P. G. (2022). Yeast and fruit fly mutual niche construction and antagonism against mould. Functional Ecology, 36(7), 1639-1654. https://doi.org/10.1111/1365-2435.14054

Chaudhary, V. B., Holland, E. P., Charman-Anderson, S., Guzman, A., Bell-Dereske, L., Cheeke, T. E., ... & Helgason, T. (2022). What are mycorrhizal traits? Trends in Ecology & Evolution, 37(7), 573-581. https://doi.org/10.1016/j.tree.2022.04.003

Chiu, L. (2019). Decoupling, commingling, and the evolutionary significance of experiential niche construction. In: T. Uller, & K. N. Laland. (Eds.), Evolutionary causation: biological and philosophical reflections (pp. 299-322). MIT Press. https://doi.org/10.7551/mitpress/11693.003.0015

Chouteau, M., & Angers, B. (2012). Wright's shifting balance theory and the diversification of aposematic signals. PloS One, 7(3), e34028. https://doi.org/10.1371/journal.pone.0034028

Christie, J. R., Brusse, C., Bourrat, P., Takacs, P., & Griffiths, P. E. (2022). Are biological traits explained by their ‘selected effect’ functions?. Australasian Philosophical Review, 6(4), 335-359. https://doi.org/10.1080/24740500.2024.2370630

Clark, A., Chalmers, D. (1988). The extended mind. Analysis, 58(1), 7-19. https://doi.org/10.1093/analys/58.1.7

Clarke, E. (2010). The problem of biological individuality. Biological Theory, 5(4), 312-325. https://doi.org/10.1162/BIOT_a_00068

Culumber, Z. W., Anaya-Rojas, J. M., Booker, W. W., Hooks, A. P., Lange, E. C., Pluer, B., ... & Travis, J. (2019). Widespread biases in ecological and evolutionary studies. BioScience, 69(8), 631-640. https://doi.org/10.1093/biosci/biz063

Dawkins, R. (1976). The selfish gene. Oxford University Press.

Diéguez, A. (2012). La vida bajo escrutinio. Biblioteca Buridán.

Eldakar, O. T., & Wilson, D. S. (2011). Eight criticisms not to make about group selection. Evolution, 65(6), 1523–1526. https://doi.org/10.1111/j.1558-5646.2011.01290.x

Fábregas-Tejeda, A., Baedke, J., Prieto, G. I., & Radick, G. (Eds.) (2024). The Riddle of Organismal Agency: New Historical and Philosophical Reflections. Routlege.

Faghihinia, M., Jansa, J., Halverson, L. J., & Staddon, P. L. (2023). Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biology and Fertility of Soils, 59(1), 17-34. https://doi.org/10.1007/s00374-022-01683-4

FAO, ITPS, GSBI, SCBD, EC. (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities, Report 2020. FAO. https://doi.org/10.4060/cb1928en

Ferguson, B. A., Dreisbach, T. A., Parks, C. G., Filip, G. M., & Schmitt, C. L. (2003). Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Canadian Journal of Forest Research, 33(4), 612-623. https://doi.org/10.1139/x03-065

Folse III, H. J., & Roughgarden, J. (2010). What is an individual organism? A multilevel selection perspective. The Quarterly Review of Biology, 85(4), 447-472. https://doi.org/10.1086/656905

Fukasawa, Y., Savoury, M., & Boddy, L. (2020). Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. The ISME Journal, 14(2), 380-388. https://doi.org/10.1038/s41396-019-0536-3

García-Montero, L. G., Monleón, V. J., Valverde-Asenjo, I., Menta, C., & Kuyper, T. W. (2024). Niche construction by two ectomycorrhizal truffle species (Tuber aestivum and T. melanosporum). Soil Biology and Biochemistry, 189, 109276. https://doi.org/10.1016/j.soilbio.2023.109276

Giovannetti, M., Fortuna, P., Citernesi, A. S., Morini, S., & Nuti, M. P. (2001). The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytologist, 151(3), 717-724. https://doi.org/10.1046/j.0028-646x.2001.00216.x

Giovannetti, M., Sbrana, C., Avio, L., & Strani, P. (2004). Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytologist, 164(1), 175-181. https://doi.org/10.1111/j.1469-8137.2004.01145.x

Giovannetti, M., Sbrana, C., Strani, P., Agnolucci, M., Rinaudo, V., & Avio, L. (2003). Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Applied and Environmental Microbiology, 69(1), 616-624. https://doi.org/10.1128/AEM.69.1.616-624.2003

Godfrey-Smith, P. (2009). Darwinian populations and natural selection. Oxford University Press.

Golan, J., Wang, Y. W., Adams, C. A., Cross, H., Elmore, H., Gardes, M., ... & Pringle, A. (2024). Death caps (Amanita phalloides) frequently establish from sexual spores, but individuals can grow large and live for more than a decade in invaded forests. New Phytologist, 242(4), 1753-1770. https://doi.org/10.1111/nph.19483

Goodnight, C. J. (2015). Multilevel selection theory and evidence: A critique of Gardner, 2015. Journal of Evolutionary Biology, 28(9), 1734-1746. https://doi.org/10.1111/jeb.12685

Goodnight, C. J., & Stevens, L. (1997). Experimental studies of group selection: What do they tell us about group selection in nature? The American Naturalist, 150(S1), S59-S79. https://doi.org/10.1086/286050

Gould S. J., & Lewontin R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B: Biological Sciences, 205(1161), 581-598. http://doi.org/10.1098/rspb.1979.0086

Haidt, J. (2012). The righteous mind: Why good people are divided by politics and religion. New York Pantheon.

Hammer, E. C., Arellano-Caicedo, C., Mafla-Endara, P. M., Kiers, E. T., Shimizu, T., Ohlsson, P., & Aleklett, K. (2024). Hyphal exploration strategies and habitat modification of an arbuscular mycorrhizal fungus in microengineered soil chips. Fungal Ecology, 67, 101302. https://doi.org/10.1016/j.funeco.2023.101302

Hawksworth, D. L., & Grube, M. (2024). Reflections on lichens as ecosystems. New Phytologist, 241(3), 972-973. https://doi.org/10.1111/nph.19418

Hertler, S. C., Figueredo, A. J., & Peñaherrera-Aguirre, M. (2020). Multilevel selection: Theoretical foundations, historical examples, and empirical evidence. Springer Nature.

Hoysted, G. A., Field, K. J., Sinanaj, B., Bell, C. A., Bidartondo, M. I., & Pressel, S. (2023). Direct nitrogen, phosphorus and carbon exchanges between Mucoromycotina ‘fine root endophyte’fungi and a flowering plant in novel monoxenic cultures. New Phytologist, 238(1), 70-79. https://doi.org/10.1242/jeb.116533

Hull, D. L. (1978). A matter of individuality. Philosophy of Science, 45(3), 335-360. https://doi.org/10.1086/288811

Hull, D. L. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11, 311-332.

Hull, David L. (1979). The Limits of Cladism. Systematic Zoology 28(4), 416-440. https://doi.org/10.2307/sysbio/28.4.416

Huxley, J. S. (1932). The individual in the animal kingdom. MIT Press.

Jany, J. L., & Pawlowska, T. E. (2010). Multinucleate spores contribute to evolutionary longevity of asexual Glomeromycota. The American Naturalist, 175(4), 424-435. https://doi.org/10.1086/650725

Jobim, K. (2020). Espécies esporocárpicas de fungos micorrízicos arbusculares (Glomeromycota): taxonomia, sistemática e evolução. Doctoral Thesis, Universidade Federal do Rio Grande do Norte, Brazil.

Johnson, N. C., & Gibson, K. S. (2021). Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Frontiers in Plant Science, 11, 627345. https://doi.org/10.3389/fpls.2020.627345

Johnson, N. C., & Marín, C. (2023). Microbial villages in the geography of arbuscular mycorrhizal symbioses. New Phytologist, 238(2). https://doi.org/10.1111/nph.18803

Johnson, N.C., & Marín, C. (2024). Functional team selection: a framework for local adaptation in plants and their belowground microbiomes. EcoEvoRxiv. https://doi.org/10.32942/X27G91

Justus, J. (2021). The philosophy of ecology: An introduction. Cambridge University Press.

Kettlewell, H. B. D. (1955). Selection experiments on industrial melanism in the Lepidoptera. Heredity, 9(3), 323-342.

Kokkoris, V., Chagnon, P. L., Yildirir, G., Clarke, K., Goh, D., MacLean, A. M., ... & Corradi, N. (2021). Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Current Biology, 31(7), 1531-1538. https://doi.org/10.1016/j.cub.2021.01.035

Kuhar, F., Terzzoli, L., Nouhra, E., Robledo, G., & Mercker, M. (2022). Pattern formation features might explain homoplasy: fertile surfaces in higher fungi as an example. Theory in Biosciences, 141(1), 1-11. https://doi.org/10.1007/s12064-022-00363-z

Kulmatiski, A., Beard, K. H., Stevens, J. R., & Cobbold, S. M. (2008). Plant–soil feedbacks: a meta‐analytical review. Ecology Letters, 11(9), 980-992. https://doi.org/10.1111/j.1461-0248.2008.01209.x

Lastovetsky, O. A., Caruso, T., Brennan, F. P., Wall, D., Pylni, S., & Doyle, E. (2024). Spores of arbuscular mycorrhizal fungi host surprisingly diverse communities of endobacteria. New Phytologist, 242(4), 1785-1797. https://doi.org/10.1111/nph.19605

Latty, T., & Beekman, M. (2015). Slime moulds use heuristics based on within-patch experience to decide when to leave. Journal of Experimental Biology, 218(8), 1175-1179. https://doi.org/10.1242/jeb.116533

Lidgard, S., & Nyhart, L. K. (Eds.) (2017). Biological Individuality: Integrating Scientific, Philosophical, and Historical Perspectives. University of Chicago Press.

Linksvayer, T. A., Fondrk, M. K., & Page Jr, R. E. (2009). Honeybee social regulatory networks are shaped by colony-level selection. The American Naturalist, 173(3), E99-E107. https://doi.org/10.1086/596527

Lloyd, E. A. (2005). The case of the female orgasm: Bias in the science of evolution. Harvard University Press.

Lloyd, E. A. (2015). Adaptationism and the logic of research questions: how to think clearly about evolutionary causes. Biological Theory, 10(4), 343-362. https://doi.org/10.1007/s13752-015-0214-2

Lloyd, E. A. (2021). Adaptation. Elements in the Philosophy of Biology. Cambridge University Press.

Lloyd, E. A. (2024). Units and Levels of Selection. En E. N. Zalta, & U. Nodelman.(Eds.), The Stanford Encyclopedia of Philosophy (Summer 2024 Edition). https://plato.stanford.edu/archives/sum2024/entries/selection-units

Lloyd, E. A., & Wade, M. J. (2019). Criteria for holobionts from community genetics. Biological Theory, 14, 151-170. https://doi.org/10.1007/s13752-019-00322-w

Mallet, J. (2010). Shift happens! Shifting balance and the evolution of diversity in warning colour and mimicry. Ecological Entomology, 35, 90-104. https://doi.org/10.1111/j.1365-2311.2009.01137.x

Manyara, D., Sánchez-García, M., Thorén, M. H., Montoliu-Nerin, M., Cheng, G., Bever, J. D., ... & Rosling, A. (2023). Purifying Selection and Persistent Polymorphism among Nuclei in the Multinucleate Arbuscular Mycorrhizal (AM) Fungi. BioRxiv. https://doi.org/10.1101/2023.04.18.537338

Marder, M., & Geremia Parise, A. (2024). Extending cognition: a vegetal rejoinder to extensionless thought and to extended cognition. Plant Signaling & Behavior, 19(1), 2345984. https://doi.org/10.1080/15592324.2024.2345984

Marín, C. (2015). Selección Multinivel: historia, modelos, debates, y principalmente, evidencias empíricas. eVOLUCIÓN: Revista de la Sociedad Española de Biología Evolutiva, 10(2), 51-70.

Marín, C. (2016). The levels of selection debate: Taking into account existing empirical evidence. Acta Biológica Colombiana, 21(3), 467-472. http://dx.doi.org/10.15446/abc.v21n3.54596

Marín, C. (2018). Conceptos fundamentales en ecología de hongos del suelo: una propuesta pedagógica y de divulgación. Boletín Micológico, 33(1), 32-56. http://dx.doi.org/10.22370/bolmicol.2018.33.1.1168

Marín, C. (2021). Spatial and density-dependent multilevel selection on weed-infested maize. Genetic Resources and Crop Evolution, 68(3), 885-897. https://doi.org/10.1007/s10722-020-01031-1

Marín, C. (2024). Three types of units of selection. Evolution, 78(3), 579-586. https://doi.org/10.1093/evolut/qpad234

Marín, C., Torres, D., Furci, G., Godoy, R., Palfner, G. (2018). Estado del arte de la conservación del reino Fungi en Chile. Biodiversidata, 7, 98-115.

May, T. W., & Hawksworth, D. L. (2024). Proposals for consideration at IMC12 to modify provisions related solely to fungi in Chapter F of the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus, 15(1), 25. https://doi.org/10.1186/s43008-024-00152-x

Mayne, R., Roberts, N., Phillips, N., Weerasekera, R., & Adamatzky, A. (2023). Propagation of electrical signals by fungi. Biosystems, 229, 104933. https://doi.org/10.1016/j.biosystems.2023.104933

Meng, Y., Davison, J., Clarke, J. T., Zobel, M., Gerz, M., Moora, M., ... & Bueno, C. G. (2023). Environmental modulation of plant mycorrhizal traits in the global flora. Ecology Letters, 26(11), 1862-1876. https://doi.org/10.1111/ele.14309

Molter, D. (2017). On mushroom individuality. Philosophy of Science, 84(5), 1117-1127. https://doi.org/10.1086/694011

Molter, D. J. (2019a). Biological Individuality in Fungi. Doctoral Thesis, University of Utah, United States.

Molter, D. J. (2019b). On mycorrhizal individuality. Biology & Philosophy, 34(5), 52. https://doi.org/10.1007/s10539-019-9706-y

Mosse, B. (1959). The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular–arbuscular mycorrhiza. Transactions of the British Mycological Society, 42, 273-286.

Nakagaki, T., Kobayashi, R., Nishiura, Y., & Ueda, T. (2004). Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1554), 2305-2310. https://doi.org/10.1098/rspb.2004.2856

Nakagaki, T., Yamada, H., & Tóth, Á. (2000). Maze-solving by an amoeboid organism. Nature, 407(6803), 470-470. https://doi.org/10.1038/35035159

Nicholson, D. J., & Gawne, R. (2015). Neither logical empiricism nor vitalism, but organicism: what the philosophy of biology was. History and Philosophy of the Life Sciences, 37, 345-381. https://doi.org/10.1007/s40656-015-0085-7

O'Malley, M. (2014). Philosophy of Microbiology. Cambridge University Press.

Odling-Smee, J. (2024). Niche Construction: How Life Contributes to Its Own Evolution. MIT Press.

Okasha, S. (2006). Evolution and the levels of selection. Oxford: Oxford University Press.

Okasha, S. (2017). Biology and the theory of rationality. In: D. L. Smith (Ed.), How Biology Shapes Philosophy (pp. 161-183). Cambridge University Press.

Okasha, S. (2024). The concept of agent in biology: motivations and meanings. Biological Theory, 19(1), 6-10. https://doi.org/10.1007/s13752-023-00439-z

Olsson, S., & Hansson, B. S. (1995). Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften, 82, 30-31. https://doi.org/10.1007/BF01167867

Orzack, S. H., & Forber, P. (2017). Adaptationism. En E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 Edition). https://plato.stanford.edu/archives/spr2017/entries/adaptationism/

Papkou, A., Garcia-Pastor, L., Escudero, J. A., & Wagner, A. (2023). A rugged yet easily navigable fitness landscape. Science, 382(6673), eadh3860. https://doi.org/10.1126/science.adh3860

Parise, A. G., & Marder, M. (2024). Extended plant cognition: a critical consideration of the concept. Theoretical and Experimental Plant Physiology, 36(3), 439-455. https://doi.org/10.1007/s40626-023-00281-5

Parise, A. G., De Toledo, G. R. A., de Carvalho Oliveira, T. F., Souza, G. M., Castiello, U., Gagliano, M., & Marder, M. (2022). Do plants pay attention? A possible phenomenological-empirical approach. Progress in Biophysics and Molecular Biology, 173, 11-23. https://doi.org/10.1016/j.pbiomolbio.2022.05.008

Parise, A. G., Gagliano, M., & Souza, G. M. (2020). Extended cognition in plants: is it possible? Plant Signaling & Behavior, 15(2), 1710661. https://doi.org/10.1080/15592324.2019.1710661

Pradeu, T. (2011). The limits of the self: immunology and biological identity. Oxford University Press.

Pradeu, T. (2016). The many faces of biological individuality. Biology & Philosophy, 31, 761-773. https://doi.org/10.1007/s10539-016-9553-z

Pradeu, T. (2017). Thirty years of Biology & Philosophy: philosophy of which biology?. Biology & Philosophy, 32(2), 149-167. https://doi.org/10.1007/s10539-016-9558-7

Radzvilavicius, A. L., & Blackstone, N. W. (2018). The evolution of individuality revisited. Biological Reviews, 93(3), 1620-1633. https://doi.org/10.1111/brv.12412

Reid, C. R., Latty, T., Dussutour, A., & Beekman, M. (2012). Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proceedings of the National Academy of Sciences, 109(43), 17490-17494. https://doi.org/10.1073/pnas.1215037109

Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 59(5), 1109-1114. https://doi.org/10.1093/jxb/erm342

Rosendahl, S. (2008). Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytologist, 178(2), 253-266. https://doi.org/10.1111/j.1469-8137.2008.02378.x

Rosslenbroich, B., Kümmell, S., & Bembé, B. (2024). Agency as an Inherent Property of Living Organisms. Biological Theory, 19, 224-236. https://doi.org/10.1007/s13752-024-00471-7

Ruse, M. (1989) What the Philosophy of Biology is. Kluwer Academic Publishers.

Russell, S., & Norvig, P. (1995). A modern, agent-oriented approach to introductory artificial intelligence. Acm Sigart Bulletin, 6(2), 24-26. https://doi.org/10.1145/201977.201989

Sanders, W. B. (2024). The disadvantages of current proposals to redefine lichens. New Phytologist, 241(3), 969-971. https://doi.org/10.1111/nph.19321

Santelices, B. (1999). How many kinds of individual are there?. Trends in Ecology & Evolution, 14(4), 152-155. https://doi.org/10.1016/S0169-5347(98)01519-5

Six, D. L. (2020). Niche construction theory can link bark beetle-fungus symbiosis type and colonization behavior to large scale causal chain-effects. Current Opinion in Insect Science, 39, 27-34. https://doi.org/10.1016/j.cois.2019.12.005

Streit, R. P., & Bellwood, D. R. (2023). To harness traits for ecology, let’s abandon ‘functionality’. Trends in Ecology & Evolution, 38(5), 402-411. https://doi.org/10.1016/j.tree.2022.11.009

Suárez, J. (2018). The importance of symbiosis in philosophy of biology: an analysis of the current debate on biological individuality and its historical roots. Symbiosis, 76(2), 77-96. https://doi.org/10.1007/s13199-018-0556-1

Suárez, J. (2020). The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality. History and Philosophy of the Life Sciences, 42(1), 11. https://doi.org/10.1007/s40656-020-00305-2

Suárez, J. (2021). El holobionte/hologenoma como nivel de seleccion. Theoria: An International Journal for Theory, History and Foundations of Science, 36(1), 81-112.

Suárez, J. (2023). Una ontología parte-dependiente de la individualidad biológica para los consorcios de múltiples especies. ArtefaCToS. Revista de Estudios sobre la Ciencia y la Tecnología, 12(1), 55-78.

Suárez, J., & Lloyd, E. A. (2023). Units of selection. Elements in the Philosophy of Biology. Cambridge University Press.

Suárez, J., & Stencel, A. (2020). A part‐dependent account of biological individuality: Why holobionts are individuals and ecosystems simultaneously. Biological Reviews, 95(5), 1308-1324. https://doi.org/10.1111/brv.12610

Suárez, J., & Triviño, V. (2020). What is a hologenomic adaptation? Emergent individuality and inter-identity in multispecies systems. Frontiers in Psychology, 11, 187. https://doi.org/10.3389/fpsyg.2020.00187

Takacs, P., & Ruse, M. (2013). The current status of the philosophy of biology. Science & Education, 22, 5-48. https://doi.org/10.1007/s11191-011-9356-1

Tedersoo, L., Mikryukov, V., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., … & Abarenkov, K. (2022). Global patterns in endemicity and vulnerability of soil fungi. Global Change Biology, 28(22), 6696-6710. https://doi.org/10.1111/gcb.16398

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., ... & Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. Science, 327(5964), 439-442. https://doi.org/10.1126/science.1177894

Todd, N. K., & Rayner, A. D. M. (1980). Fungal individualism. Science Progress, 66(263), 331-354.

Van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., ... & Wardle, D. A. (2013). Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101(2), 265-276. https://doi.org/10.1111/1365-2745.12054

VanKuren, N. W., den Bakker, H. C., Morton, J. B., & Pawlowska, T. E. (2013). Ribosomal RNA gene diversity, effective population size, and evolutionary longevity in asexual Glomeromycota. Evolution, 67(1), 207-224. https://doi.org/10.1111/j.1558-5646.2012.01747.x

Wade, M. J., & Goodnight, C. J. (1991). Wright's shifting balance theory: an experimental study. Science, 253(5023), 1015-1018.

Wang, L., Zhang, L., George, T. S., & Feng, G. (2023). A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. New Phytologist, 238(2), 859-873. https://doi.org/10.1111/nph.18642

Weismann, A. (1904). The Evolution Theory. Edward Arnold.

Wilson, D. S., & Sober, E. (1994). Reintroducing group selection to the human behavioral sciences. Behavioral and Brain Sciences, 17(4), 585-608. https://doi.org/10.1017/S0140525X00036104

Wilson, D. S., & Wilson, E. O. (2007). Rethinking the theoretical foundation of sociobiology. The Quarterly Review of Biology, 82(4), 327-348. https://doi.org/10.1086/522809

Wong-Bajracharya, J., Singan, V. R., Monti, R., Plett, K. L., Ng, V., Grigoriev, I. V., ... & Plett, J. M. (2022). The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proceedings of the National Academy of Sciences, 119(3), e2103527119. https://doi.org/10.1073/pnas.2103527119

Xia, C., Canela-Xandri, O., Rawlik, K., & Tenesa, A. (2021). Evidence of horizontal indirect genetic effects in humans. Nature Human Behaviour, 5(3), 399-406. https://doi.org/10.1038/s41562-020-00991-9

Zanne, A. E., Abarenkov, K., Afkhami, M. E., Aguilar‐Trigueros, C. A., Bates, S., Bhatnagar, J. M., ... & Treseder, K. K. (2020). Fungal functional ecology: bringing a trait‐based approach to plant‐associated fungi. Biological Reviews, 95(2), 409-433. https://doi.org/10.1111/brv.12570

Zhang, C., van der Heijden, M. G., Dodds, B. K., Nguyen, T. B., Spooren, J., Valzano-Held, A., Cosme, M., & Berendsen, R. L. (2024). A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome, 12(1), 13. https://doi.org/10.1186/s40168-023-01726-4

Descargas

Publicado

2024-12-30

Cómo citar

Marín, C., & Suárez, J. (2024). Filosofía Fungi. Ludus Vitalis. Revista De Filosofía De Las Ciencias De La Vida, 30(2), 71–96. https://doi.org/10.22370/lv.2024.30.2.4566

Número

Sección

Artículos