Revisión de métodos utilizados para el estudio del comportamiento del viento en cultivos (2019-2023)
DOI:
https://doi.org/10.22370/sst.2025.13.5486Palabras clave:
Viento, cultivos, cortinas rompevientos, túnel de viento, Fluido Dinámica ComputacionalResumen
Se realizó una revisión sistemática que abarca las publicaciones de los últimos 5 años (2019-2023). Se relevaron las distintas técnicas experimentales y las teóricas utilizadas en el examen de la dinámica del viento dentro de los doseles vegetales protegidos con cortinas rompevientos. Materiales y métodos: se llevó a cabo una búsqueda exhaustiva en los repositorios académicos ScienceDirect® y Google Scholar®, empleando palabras clave específicas relacionadas con estudios del comportamiento del viento en contextos agrícolas. El alcance temporal de la búsqueda se limitó al período comprendido entre 2019 y 2023. Se recopilaron y analizaron los avances más recientes en el campo de la investigación de la interacción viento - planta. Los hallazgos obtenidos muestran los progresos realizados, además de revelar líneas potenciales de investigación aún no exploradas. Se destacan nuevas técnicas emergentes que aún están en etapas de desarrollo.
Descargas
Referencias
An, L., Wang, J., Xiong, N., Wang, Y., You, J., & Li, H. (2022). Assessment of permeability windbreak forests with different porosities based on laser scanning and computational fluid dynamics. Remote Sensing, 14(14), 3331. https://doi.org/10.3390/rs14143331
BenMoshe, N., Fattal, E., Leitl, B., & Arav, Y. (2023). Using machine learning to predict wind flow in urban areas. Atmosphere, 14(6), 990. https://doi.org/10.3390/atmos14060990
BenMoshe, N.; Fattal, E.; Leitl, B.; & Arav, Y. (2023) Using Machine Learning to Predict Wind Flow in Urban Areas. Atmosphere, 14(6), Article Number 990. https://doi.org/10.3390/ atmos14060990
Brunet, Y. (2020). Turbulent Flow in Plant Canopies: Historical Perspective and Overview. Boundary-Layer Meteorology 177, 315–364. https://doi.org/10.1007/s10546-020-00560-7 Cheng, H., He, W., Liu, C., Zou, X., Kang, L., Chen, T., & Zhang, K. (2019). Transition model for airflow fields from single plants to multiple plants. Agricultural and Forest Meteorology, 266-267, 29–42. DOI: 10.1016/j.agrformet.2018.11.039
Chockalingam, G., Afshari, A. & Vogel, J. (2023). Characterization of Non-Neutral Urban Canopy Wind Profile Using CFD Simulations—A Data-Driven Approach. Atmosphere, 14 (3). Article Number 429. https://doi.org/10.3390/atmos14030429
Cintolesi, C., Barbano, F., Trudu, P. L., Finco, A., Gerosa, G., & Di Sabatino, S. (2023). Characterisation of flow dynamics within and around an isolated forest, through measurements and numerical simulations. Agricultural and Forest Meteorology, 339, Article Number 109557. https://doi.org/10.1016/j.agrformet.2023.109557.
Gardiner, B. (2021). Wind damage to forests and trees: A review with an emphasis on planted and managed forests. Journal of Forest Research, 26(4), 248–266. https://doi.org/10.1080/13416979.2021.1940665
Golberg, A. D. (2010). El viento y la vida de las plantas. Revista de la Facultad de Ciencias Agrarias, 42(1), 221-243. https://bdigital.uncu.edu.ar/3558
Gonçalves, R., Linhares, C., & Yojo, T. (2020). Drag coefficient in urban trees. Trees, 37(4), 13-145. DOI: 10.1007/s00468-019-01951-1.
Gonzales, H. B., Tatarko, J., Casada, M. E., Maghirang, R. G., Hagen, L. J., & Barden, C. J. (2019). Computational fluid dynamics simulation of airflow through standing vegetation. Transactions of the ASABE, 62(6), 1713–1722. DOI: https://doi.org/10.13031/trans.13449
Gough, H., King, M.-F., Nathan, P., Grimmond, C. S. B., Robins, A., Noakes, C. J., Barlow, J. F. (2019) Influence of neighbouring structures on building façade pressures: Comparison between full-scale, wind-tunnel, CFD and practitioner guidelines. Journal of Wind Engineering and Industrial Aerodynamics, 189, 22–33. https://doi.org/10.1016/j.jweia.2019.03.011
Guo, Z., Yang, X., Wu, X., Zou, X., Zhang, C., Fang, H., & Xiang, H. (2021). Optimal design for vegetative windbreaks using 3D numerical simulations. Agricultural and Forest Meteorology, 323, 298–299, Article Number 108290. https://doi.org/10.1016/j.agrformet.2020.108290
Hesp, P. A., Dong, Y., Cheng, H., & Booth, J. L. (2019). Wind flow and sedimentation in artificial vegetation: Field and wind tunnel experiments. Geomorphology, 337, 165-182. https://doi.org/10.1016/j.geomorph.2019.03.02
H'ng, Y. M., Ikegaya, N., Zaki, S. A., Hagishima, A. & Mohammad, A. F. (2022). Wind-tunnel estimation of mean and turbulent wind speeds within canopy layer for urban campus. Urban Climate, 41. Article Number 101064. https://doi.org/10.1016/j.uclim.2021.101064.
Ismail, J. J., Pane, E. A., Suyitno, B. M., Rahayu, G. H. N. N., Rhakasywi, D., & Suwandi, A. (2020). Computational fluid dynamics simulation of the turbulence models in the tested section on wind tunnel. Ain Shams Engineering Journal, 11(4), 1201–1209. https://doi.org/10.1016/j.asej.2020.02.012
Ismail, J. J., Pane, E. A., & Rahman, R. A. (2022). An open design for a low-cost open-loop subsonic wind tunnel for aerodynamic measurement and characterization. HardwareX, 12, e00352. https://doi.org/10.1016/j.ohx.2022.e00352
Kim, R. W., Hong, S. W., Norton, T., Amon, T., Youssef, A., Berckmans, D., & Lee, I. B. (2020). Computational fluid dynamics for non-experts: Development of a user-friendly CFD simulator (HNVR-SYS) for natural ventilation design applications. Biosystems Engineering, 193, 232–246. https://doi.org/10.1016/j.biosystemseng.2020.03.005
Kučera, J., Podhrázská, J., Karásek, P., & Papaj, V. (2020). The Effect of Windbreak Parameters on the Wind Erosion Risk Assessment in Agricultural Landscape. Journal of Ecological Engineering, 21(2), 150-156. DOI: https://doi.org/10.12911/22998993/116323.
Lincango Casa, W. E. (2023). Diseño y construcción de un túnel de viento a escala para obtener datos mediante pruebas aerodinámicas [Tesis de grado, Universidad Internacional SEK]. Repositorio UISEK. http://repositorio.uisek.edu.ec/handle/123456789/5040
Makedonas, A., Carpentieri, M., & Placidi, M. (2021). Urban boundary layers over dense and tall canopies. Boundary-Layer Meteorology, 181(1), 73–93. https://doi.org/10.1007/s10546-021-00635-z
Kučera, J., Podhrázská, J., Karásek, P., & Papaj, V. (2020). The Effect of Windbreak Parameters on the Wind Erosion Risk Assessment in Agricultural Landscape. Journal of Ecological Engineering, 21(2), 150-156. DOI: https://doi.org/10.12911/22998993/116323.
Miri, A., Dragovich, D., & Dong, Z. (2017). Vegetation morphologic and aerodynamic characteristics reduce aeolian erosion. Scientific Reports, 7, Article Number 12831. https://doi.org/10.1038/s41598-017-13084-x.
Mo, Z., Liu, C. H., Chow, H. L., Lam, M. K., Lok, Y. H., Ma, S. W., & Yip, P. Y. (2022). Roughness sublayer over vegetation canopy: A wind tunnel study. Agricultural and Forest Meteorology, 319, Article Number 108880. https://doi.org/10.1016/j.agrformet.2022.108880
Oberschelp, G. P. J., Harrand, L., Mastrandrea, C. A, Salto, C. S., y Florez Palenzona, M. H. (2020). Cortinas forestales: rompevientos amortiguadores de deriva de agroquímicos. Ediciones INTA. http://hdl.handle.net/20.500.12123/21382
Phillips, D. A., y Soligo, M. J. (2019). Will CFD ever replace wind tunnels for building wind simulations? International journal of High-Rise Buildings, 8(2), 107-116. https://doi.org/10.21022/IJHRB.2019.8.2.107
Qin, X., Liang, W., Liu, Z., Liu, M., Baskin, C. C., Baskin, J. M., Xin, Z., Wang, Z. & Zhou, Q. (2022). Plant canopy may promote seed dispersal by wind. Scientific Reports, 12(1). Article Number 63. https://doi.org/10.1038/s41598-021-03402-9
Renault, M. A., Bailey, B. N., Stoll, R., & Pardyjak, E. R. (2024). A rapid method for computing 3-D high-resolution vegetative canopy winds in weakly complex terrain. Frontiers in Earth Science, 11, Article Number 1251056. https://doi.org/10.3389/feart.2023.1251056
Rosenfeld, M., Marom, G., & Bitan, A. (2010). Numerical simulation of the airflow across trees in a windbreak. Boundary-Layer Meteorology, 135, 89–107. https://doi.org/10.1007/s10546-009-9461-8
Ru, Y., Hu, C., Chen, X., Yang, F., Zhang, C., Li, J., & Fang, S. (2023). Droplet Penetration Model Based on Canopy Porosity for Spraying Applications. Agriculture (Switzerland), 13(2), Article Number 339. https://doi.org/10.3390/agriculture13020339.
Scagnellato, L., Lecce, M., Bloise, N., Carreno Ruiz, M., Capello, E., & Guglieri, G. (2022). Adaptive path planning for spraying UAS in vineyard under variable wind condition. ICAS PROCEEDINGS 33th Congress of the International Council of the Aeronautical Sciences (Vol. 7, pp. 5505-5519). International Council of the Aeronautical Sciences (ICAS). https://www.proceedings.com/content/068/068439webtoc.pdf
Sherman, D. J. (2020). Understanding wind-blown sand: Six vexations. Geomorphology, 366, Article Number 107193. https://doi.org/10.1016/j.geomorph.2020.107193
Shnapp, R., Shapira, E., Peri, D., Bohbot-Raviv, Y., Fattal, E., & Liberzon, A. (2019). Extended 3D-PTV for direct measurements of Lagrangian statistics of canopy turbulence in a wind tunnel. Scientific Reports, 9, Article Number 7405. https://doi.org/10.1038/s41598-019-43555-2
Torkelson, G., Price, T. A., & Stoll, R. (2022). Momentum and turbulent transport in sparse, organized vegetative canopies. Boundary-Layer Meteorology, 184(1), 1-24. https://doi.org/10.1007/s10546-022-00698-6.
Ulmer, L., Margairaz, F., Bailey, B.N., Mahaffee, W. F., Pardyjak, E. R., & Stoll, R. (2023). A fast-response, wind angle-sensitive model for predicting mean winds in row-organized canopies. Agricultural and Forest Meteorology, 329, Article Number 109273. https://doi.org/10.1016/j.agrformet.2022.109273.
Wang, J., Patruno, L., Zhao, G., & Tamura, Y. (2024). Windbreak effectiveness of shelterbelts with different characteristic parameters and arrangements by means of CFD simulation. Agricultural and Forest Meteorology, 344, 109813. https://doi.org/10.1016/j.agrformet.2023.109813
Yan, J., Zhao, L., Zhang, Y., & Zhang, L. (2022). Wind tunnel study on convective heat transfer performance of vegetation canopies with different structures. Building and Environment, 223, 109470.
Yusof, M. A. M., Sharila, S., Wan Mohtar, W. H. M., Idris, A. C., & Yusof, A. M. (2023). The application of OpenFOAM in modelling flow for vegetated channel. Jurnal Kejuruteraan, 35(4), 961–973. https://doi.org/10.17576/jkukm-2023-35(4)-19
Zhang, Q. (2021). Experimental study of wind pressure on a long-span canopy roof structure using a wind tunnel. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45, 197-206 DOI: 10.1007/s40996-020-00400-1.
Zhu, W. (2019). Models for wind tunnel tests based on additive manufacturing technology. Progress in Aerospace Sciences, 110, Article Number 100541. https://doi.org/10.1016/j.paerosci.2019.05.001
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.